PROBLEMS AND SOLUTIONS AT THE STAGE OF INNOVATIVE DEVELOPMENT OF SCIENCE, EDUCATION AND TECHNOLOGY.

International online conference.

Date: 23rdNovember-2025

MEDICAL GENETICS: NEW OPPORTUNITIES FOR EARLY DETECTION OF HEREDITARY DISEASES

Abdusamatova Dilbar Zuxriddinovna

Teacher of Yunusabad Abu Ali ibn Sino Public Health Technical college

Annotation: This article analyzes the modern development stages of medical genetics, the molecular basis of hereditary diseases, and new technologies for their early detection. The practical significance of genome analysis, whole exome and whole genome sequencing, prenatal and preimplantation diagnostics, neonatal screening, and population-based genetic testing is highlighted. Additionally, gene-editing technologies such as CRISPR-Cas9, epigenetic mechanisms, bioinformatics tools, and the concept of personalized medicine are demonstrated, based on scientific evidence, to create new opportunities for identifying hereditary disorders. The article examines a comprehensive approach aimed at preventing hereditary diseases, identifying high-risk groups, improving genetic counseling services, and enhancing public health. The results confirm the increasing role of medical genetics in the future of medicine.

Keywords: Medical genetics, hereditary diseases, genome analysis, exome sequencing, prenatal diagnostics, neonatal screening, gene editing, CRISPR-Cas9, epigenetics, bioinformatics, genetic counseling, personalized medicine, molecular diagnostics, genetic mutations.

One of the rapidly developing branches of modern medicine is medical genetics, which studies hereditary factors in the human body, their relationship with diseases, and the pathologies that arise as a result of gene dysfunction. While the fundamental laws of genetics were discovered in the 20th century, the significant progress of genomics, proteomics, molecular biology, and bioinformatics in the 21st century has greatly expanded the possibilities for understanding hereditary diseases, diagnosing them early, and preventing their occurrence. After the complete sequencing of the human genome, medical genetics has become a strategically important field closely linked to all areas of healthcare. Today, many hereditary diseases can be detected from the embryonic period, and individualized preventive measures are already available for them.

Globally, hereditary diseases are among the most pressing issues for healthcare systems. According to WHO data, at least 3–5 out of every 100 newborns are diagnosed with hereditary or congenital disorders. In some regions—particularly those with high rates of consanguineous marriages—this figure reaches 7–10 percent. Most hereditary diseases manifest in the early stages of life and lead to severe clinical conditions such as neurological disorders, skeletal deformities, metabolic syndromes, cardiac defects, and immune deficiencies. At the same time, many diseases progress silently and only appear later in adulthood. For example, genetic predispositions to familial hypercholesterolemia,

PROBLEMS AND SOLUTIONS AT THE STAGE OF INNOVATIVE DEVELOPMENT OF SCIENCE, EDUCATION AND TECHNOLOGY.

International online conference.

Date: 23rdNovember-2025

hereditary hypertension, and certain oncological disorders may remain unnoticed for many years. Therefore, genetic diagnostics are essential not only for identifying congenital diseases but also for predicting pathologies that may develop later in life.

With the advancement of genetic diagnostic methods, new opportunities for early detection of hereditary diseases have emerged. For instance, molecular-genetic analyses can identify defects in genes, while prenatal and preimplantation diagnostics allow assessment of the fetus's genetic status. Pharmacogenetics provides insights into individual responses to medications. In recent years, "whole genome sequencing" (WGS) and "whole exome sequencing" (WES) technologies have begun to transform many areas of medicine. These technologies enable the identification of previously unknown genetic syndromes and help to study the molecular basis of complex multifactorial diseases.

The role of medical genetics in human health is especially significant in the formation of a healthy generation and the prevention of hereditary diseases. The prevalence of hereditary disorders among newborns in any country depends on the development of its healthcare system, the level of medical awareness among the population, the quality of prenatal screening programs, and the effectiveness of genetic counseling services. For this reason, many countries have incorporated genetic screening into their national health programs. For instance, newborn screening for phenylketonuria, hypothyroidism, and galactosemia is mandatory in almost all countries. When these diseases are detected early, their severe consequences can be prevented through dietary management or hormonal medications. This clearly demonstrates the importance of genetic diagnostics.

Modern medical genetics not only diagnoses hereditary disorders but also provides insight into their mechanisms of development. The function of each gene, the diseases caused by its impairment, types of mutations, gene-gene interactions, and epigenetic factors are among the most critical scientific topics today. The development of epigenetics has significantly changed our understanding of hereditary diseases. It has become clear that genetic changes are not limited to mutations in DNA sequences; gene functions may also be altered by chemical modifications caused by environmental factors. This highlights the major role of environmental influences, diet, lifestyle, and stress in the development of hereditary diseases.

Additionally, new possibilities for early detection of hereditary disorders include liquid biopsy, genetic panels, polygenic risk scores (PRS), and metagenomic analyses. Liquid biopsy allows the identification of genetic alterations through small amounts of DNA obtained from the patient's blood. This method is particularly effective in oncology for example, in assessing the risk of breast cancer associated with BRCA1/BRCA2 gene mutations. Polygenic risk scores allow the evaluation of predisposition to certain diseases based on the combined effect of multiple genes. This method is expected to bring revolutionary results to preventive medicine in the near future.

Another important field of medical genetics is personalized (precision) medicine. Since each individual has a unique genetic profile, responses to medications vary

PROBLEMS AND SOLUTIONS AT THE STAGE OF INNOVATIVE DEVELOPMENT OF SCIENCE. EDUCATION AND TECHNOLOGY.

International online conference.

Date: 23rdNovember-2025

significantly. Pharmacogenetics helps to select medications tailored to an individual's genetic characteristics. For example, some patients may experience toxic effects from cardiovascular drugs due to genetic factors. Genetic testing can prevent such adverse effects and ensure the selection of optimal treatment strategies offering maximum benefit with minimal risk.

Genetic counseling services also play a crucial role. Genetic specialists provide parents with comprehensive information on hereditary disorders, assess risk levels, predict the likelihood of transmission to offspring, and recommend prenatal diagnostics or assisted reproductive options if necessary. This process is not only medically important but also intertwined with psychological, social, and ethical aspects. Genetic counselors support families in making informed decisions, understanding risks, and taking the necessary steps to ensure a healthy generation.

The advantages of early detection of hereditary diseases are numerous:

- early treatment initiation;
- prevention of severe complications;
- significant improvement in quality of life;
- evaluation of genetic risks for future offspring;
- implementation of preventive measures when susceptibility is identified.

In particular, metabolic diseases can be easily managed when detected early. For example, children with phenylketonuria can maintain normal intellectual development by following a special diet. Similarly, prenatal screening is highly effective for disorders such as thalassemia, hemophilia, and Down syndrome.

Global scientific research is actively working to address genetic problems, eradicate hereditary diseases entirely, repair defective genes, and correct harmful mutations. The invention of CRISPR-Cas9 technology has revolutionized gene engineering. This method allows the removal of mutated genes and the insertion of healthy ones. Although CRISPR is still largely at the experimental stage, it is expected to become a promising treatment for many hereditary diseases in the future.

Furthermore, the development of artificial intelligence and bioinformatics has introduced major advancements in analyzing genetic data, interpreting mutations, and predicting disease risks. Millions of DNA sequences can now be analyzed within minutes, significantly increasing the efficiency of medical genetics.

In Uzbekistan, the field of medical genetics is gradually developing. Prenatal screening systems have been established, and modern laboratories for diagnosing hereditary diseases have been launched. However, further improvement of genetic services, training of specialists, expansion of scientific research, and raising public awareness about hereditary disease prevention remain priority tasks.

In conclusion, the modern development of medical genetics offers tremendous opportunities for early detection, prevention, personalized treatment, and the formation of a healthy generation. The scientific and practical achievements of this field form the

PROBLEMS AND SOLUTIONS AT THE STAGE OF INNOVATIVE DEVELOPMENT OF SCIENCE, EDUCATION AND TECHNOLOGY.

International online conference.

Date: 23rdNovember-2025

foundation of personalized medicine and may ultimately lead to the elimination of many genetic disorders in the future.

REFERENCES:

- 1. Strachan, T., & Read, A. (2019). Human Molecular Genetics. Garland Science.
- 2. National Human Genome Research Institute (NHGRI). Genomic Medicine and Genetic Disorders Overview.
- 3. Weatherall, D. J. (2001). Genomics and the future of medicine. BMJ.
- 4. Lander, E. S. (2011). Initial impact of the sequencing of the human genome. Nature.
- 5. Cooper, G. M., & Hausman, R. E. (2020). The Cell: A Molecular Approach. Sinauer Associates Genetics section.
- 6. World Health Organization (WHO). Genomics and Public Health Global report.
- 7. Biesecker, L. G., & Green, R. C. (2014). Diagnostic clinical genome and exome sequencing. The New England Journal of Medicine.

