SCIENCE, EDUCATION, INNOVATION: MODERN TASKS AND PROSPECTS. International online conference.

Date: 5thNovember-2024

ИССЛЕДОВАНИЕ ИЗНОСОСТОЙКОСТИ ТКАНИ ДЛЯ СПЕЦИАЛЬНОЙ ОДЕЖДЫ

Ташкентский институт текстильной и легкой промышленноси, Узбекистан, Ташкент

В статье приведены комплексная оценка страение ткани в зависмости от стойкости ткани к истиранию.

Ключевые слова: хлопчатобумажно-бамбуковых нитей, разрывная нагрузка, деыормация, релаксация, качество изделий.

Введение. В предлагаемой работе изучается целесообразность применения обобщенных показателей строения-коэффициента уплотненности переплетения – С и коэффициента наполнения тканей $-H_{\scriptscriptstyle T}$ к совместному воздействию солнечной промежуточных стирок; затем, ПО полученным результатам износостойкости-возможность последующей оптимизации строения данных тканей с помощью отмеченных обобщенных показателей [1].

Актуальность исследования. Исследования выполнялись на тканях из смешанных (хлопок и бамбук) нитей с линейной плотностью 18,5х2 текс по основе и Т=37 текс по утку различия в структурах опытных тканей проектировались за счет изменения величины коэффициента С.

Критериями оценки износа изучаемых тканей являлись показатели изменения стойкости к истиранию по поверхности и угла восстановления после смятия, полученные результате сопоставления характеристик показателей. ЭТИХ фиксированных до и после изнашивания данных тканей.

Объект и методы исследования. Полученные закономерности связаны с характером взаимодействия основном двух факторов, определяющих тканей проникновения структуры солнечной радиации: В уплотненности переплетения и блеска тканей. При увеличении коэффициента уплотненности переплетения от 0,348 до 1,0 коэффициент отражения света уменьшается в 2,5 раза – с 7,5 до 3 %.

При С<0,56, сравнительно легкое проникновение солнечной радиации в разуплотненную за счет переплетения ткань превалирует над ее светоотражающими способностями, также значительными для данных структур, и в целом на рассматриваемом участке износ возрастает. По другую же сторону данному максимума, при С>0,63, за счет более низкого значения коэффициента отражения светового потока поглощение солнечной радиации преобладает над сравнительно высокими способностями уплотненных структур задерживать проникновения солнечных лучей в ткань, что тоже приводит к повышенному разрушению данных тканей. По месту же самого максимума, по-видимому, происходит совместное действие фактора относительно среднего отражения лучистой энергии с фактором

SCIENCE, EDUCATION, INNOVATION: MODERN TASKS AND PROSPECTS. International online conference.

Date: 5thNovember-2024

относительно среднего сопротивления структур тканей проникновению солнечной радиации в волокнистую массу, что в целом обеспечивает максимальную стойкость данных тканей к воздействию изучаемых факторов.

Результаты исследований. В работе показано, что найденным оптимальным значениям строения опытных тканей. Выраженным величиной коэффициента уплотненности переплетения (C=0.56-0.63), соответствует в пределах рассматриваемых структур значения итогового показателя строения - коэффициента $H_{\rm T}$, составляющее 77-87 %, которые также будут оптимальными.

Факторный эксперимент осуществляют с помощью матрицы планирования (табл.1), в которой используются кодированные факторы. При кодировании факторов осуществляется линейное преобразование факторного пространства с переносом начала координат в центр эксперимента и выбором масштаба по осям в единицах варьирования факторов. Кодированные и натуральные значения для рассматриваемых в работе двух управляемых факторов и интервалы варьирования ими приведены в (табл. 2).

Уровни и интервалы варирования факторов

DOVETO MAY	Уровни в	Интервалы				
Факторы	-1,414	-1,0	0	+1,0	+1,414	варьирования
X_{-1} — плотность по утка, нить /10см	217	218	220	222	223	2
${ m X}_{2}$ – величина заступа, см	3,3	3,5	4	4,5	4,7	0,5

Таблица 2

	Ac	Кодирова		Натурал	ьные	Готовая ткань до стирок						
~~~	್ಲ Open	значения i – го фактора		значения фактора		Потеря прочности от истирания		Количество опорных точек		Уработка, %		
NAL	1 3	$X_1$	X 2	Р _у ,нить /10см	Пс , см	По основе	По утку	По основе	По утку	По основе	По утку	
0	1	+	+	222	4,5	64,2	58,0	215	140	13,2	16,4	
A	2	-	+	218	4,5	44,6	70,2	87	241	14,9	19,5	
ERI	3	+	-	222	3,5	66,4	58,2	205	147	14,1	16,6	
Z	<u>4</u>	-	-	218	3,5	27,3	49,0	219	227	15,2	18,0	
	5	-1,414	0	217	4	46,5	72,1	87	232	15,2	18,6	
	6	+1,414	0	223	4	67,2	60,4	208	147	14,1	16,8	
	7	0	-1,414	220	3,3	70,1	64,6	214	142	15,4	17,0	
	8	0	+1,414	220	4,7	24,4	45,5	256	299	13,8	18,4	
	9	0	0	220	4	51,2	55,5	260	276	14,4	16,1	
	10	0	0	220	4	53,0	56,2	263	277	14,6	16,2	

# SCIENCE, EDUCATION, INNOVATION: MODERN TASKS AND PROSPECTS. International online conference.

Date: 5thNovember-2024

Обсуждение и выводы полученных результатов. Из работы вытекает целесообразность оценки износостойкости, а также других физико-механических свойств тканей по коэффициентам уплотненности ткани по утку и положения скала, а также возможность оптимизации строения хлопковых тканей для рабочих одежды показателей строения.



- 1. Кобляков А.И. Лабораторный практикум по текстильному материаловедению., М:. Легпромбытиздат 1986., 343с.
- 2. G.E. Box J.S. Hanter. Annals of Mathematical statistics. 2017, v.28, №1, p.195.
- 3. Комола Муродходжаэва; Наима Содикова; Патхилло Сиддиков; Дилрабо Назарова; Махнуза Жалилова. // Some peculiarities of the production of fabrics with large patterns using the coordinate method //.

