SCIENCE, EDUCATION, INNOVATION: MODERN TASKS AND PROSPECTS. International online conference.

Date: 5thNovember-2024

NON-TRADITIONAL FOOD SOURCES: PROBLEMS AND PROSPECTS

The production of food and food products from insects is noted as an alternative source of food products, especially in the fight against hunger worldwide [Chae et al., 2012; Fontaneto et al., 2011; Mariod, 2011; Premalatha et al., 2011; FAO, 2012]. In some major geographical areas, including many countries in Asia, Africa, Central America, and South America, humans breed seasonally, and many species of insects rich in protein are consumed as a daily necessity [Katayama et al., 2008]. Insects are of great interest not only as a biological resource with unlimited reproduction possibilities, but also as a new, unusual food that gives countries located in the Western regions a unique taste and taste [Bukkens, 2005; Nonaka, 2009]. Numerous scientific articles and research findings demonstrating the potential use of insects as food products as a promising non-traditional source of famine relief worldwide are widely published, primarily by scientists from European countries [De Foliart, 1992; Ramos-Elorduy et al., 2011]. According to scientific and statistical data published almost 20 years ago, over 1,500 species of insects are eaten by people belonging to over 300 ethnic groups in 113 countries around the world, regardless of their economic, social, and food capabilities [MacEvilly, 2000]. The purpose of the study is to demonstrate that even in the most developed European countries, forage insects are bred on a massive, industrial basis for various purposes, and to demonstrate the potential of these forage insects in overcoming existing problems in providing food products in agriculture, including poultry and fish farming.

Some industrial insect species in Uzbekistan and European countries [Comby, 1990]

N⁰	Insect	State	Area of application	Sources
	species			
1	Bombyx mori	Uzbekistan	It is widely used in the silk industry	
	(Linnaeus, 1758)	Europe	worldwide	
2	Galleria	Uzbekistan	The entomophage is mainly widely	[Sulaymon
	mellonella*		used in insect breeding, including the wax	ov et al,
			moth caterpillars used to breed the bracon	2017]
			(Bracon hebetor Say).	
		Europe	Entomophages are widely used as	[Giannouli
			objects in insect reproduction, as well as in	et al. 2014]
			the synthesis of melanin and various	
			antibiotics. It is also widely used as a test	
			module for studying the effects of various	
			chemical and biological drugs and antibiotics	
3	Apis mellifera*	Uzbekistan	Europe is widely used in the	
		Europe	beekeeping industry worldwide.	
4	Tenebrio molitor*	Europe *	In European countries, as well as in	[Mlček et
5	Hermetia illucens*	Uzbekistan	Asian, African, and American countries, it is	al, 2018],

SCIENCE, EDUCATION, INNOVATION: MODERN TASKS AND PROSPECTS. International online conference.

2024

-thy T

Date: 5 th November-2024						
6	Musca domestica*	used in animal husbandry, fish farming, and	[Soares			
7	Zophobas	poultry farming as a feed additive, as a feed	Araújoa et			
	atratus**	additive, and as a delicacy. It is also widely	al. 2019],			
8	Gryllus	used in the production of biodiesel and in the	[Khujamsh			
	assimillis**	production of biological preparations against	ukurov et			
9	Acheta	various types of insect pests. * It is primarily	al, 2016			
	domesticus*	used as a feed additive in the experimental	a,b]			
10	Gryllus	fishery and poultry industry.				
	assimillis**					
11	Locusta					
	migratoria*					
12	Schistocerca					
	gregaria (Forskal,					
	1775)					
	Izoh: *-Linnaeus, 1758. **-Fabricius, 1775.					

The species Tenebrio molitor, Hermetia illucens, Musca domestica, Zophobas atratus, and Acheta domesticus, recorded in scientific sources as forage insects, are not very demanding of the nutrient medium, and the possibility of year-round breeding in controlled insectaria is of great importance in the organization of industrial production. In China alone, insect species belonging to 11 orders and 324 species are recorded as sources of food and food products

Number of patents for insect species and forage insects registered as feed and food source in China [Ying Feng et al, 2017]

In Mexico, the following terrestrial and aquatic insect species are widely used for food production:

Insect species	Stages of development	Protein retention, %
Coleoptera	beetle and larva	23-66
Lepidoptera	pupa and larva	14 - 68
Hemiptera	beetle and larva	42 - 74
Homoptera	beetle, larva, and egg	45 -57
Hymenoptera	beetle, pupa, larva, and egg	13 – 77
Odonata	beetles and young beetles	46-65

SCIENCE, EDUCATION, INNOVATION: MODERN TASKS AND PROSPECTS. International online conference.

Date: 5 th November-2024						
Orthoptera	beetles and nymphs	23 - 65				

Therefore, these insect species are bred and studied at the Tashkent Institute of Chemical Technology (Uzbekistan) and the "Biotechnology" Research Laboratory as a source of feed additives for poultry and fish farming. However, in local conditions, there is a need to create a special infrastructure for the production and implementation of feed additives and feed additives from forage insect species, including their production, processing, storage, distribution of finished products, and market marketing. It is also necessary to develop regulatory and legal norms required for their use as feed additives

LIST OF REFERENCES:

1. Bukkens S.G.F.The nutritional value of edible insects. Ecol.Food Nutr., 1997, 36, 287–319.

2. Chae J., Kurokawa K., So Y., Hwang H.O., Kim M., Park J., JoY., Lee Y.S., Lee B.L.Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev. Compar. Immunol., 2012, 36, 540–546.

3. Comby B.Délicieux insectes. Les protéines du future. 1990, 1sted., EditionsJouvence:Geneve,Switzerland. Pr.105–119.

4. De Foliart G.R.Insects as human food. Crop Prot., 1992, 11,395–399.

5. FAO. Assessing the Potential of Insects as Food and Feed in assuring Food Security, 2012, in: Summary Report of TechnicalConsultation Meeting (eds. P. Vantomme, E. Mertens, A. vanHuis, H. Klunder). Rome, Italy.

6. Ying Feng., Xiao-Ming Chen., Min Zhao., Zhao He., Long Sun., Cheng-Ye Wang., Wei-Feng Ding. Edible insects in China: Utilization and prospects.Insect Science. February2017. 0. Pp.1-15. doi 10.1111/1744-7917.12449.

7. van Huis A., van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P.Edible Insects. Future Prospects for Food and Feed Security, FAO, Rome, 2013 (201 pp.).

and additives.

