Date: 5thFebruary-2025

FACTORS AFFECTING THE WEAR AND DAMAGE OF DRAWING TOOLS IN RING ROLLING MACHINES

Karimov Rustamjon Ibragimovich

Andijan Machine building institute, Department "Material science"

Abstract: The wear and damage of drawing tools in ring rolling machines are critical factors that influence the performance, efficiency, and operational lifespan of the machinery. This paper investigates the primary causes of tool wear and damage during the drawing process, emphasizing factors such as material properties, operational conditions, and environmental influences. An in-depth analysis of tool degradation mechanisms, including abrasive wear, adhesive wear, thermal degradation, and fatigue, is presented. Experimental results based on controlled tests are also discussed to understand the extent of wear under different operational parameters. The findings provide recommendations for improving tool life and the efficiency of ring rolling processes.

Keywords: Tool wear, damage, drawing tools, ring rolling machines, wear mechanisms, material degradation, operational parameters

Introduction

Ring rolling machines are widely used in the production of rings and cylindrical parts in industries such as aerospace, automotive, and energy. The drawing tools in these machines play a significant role in shaping metal, and their wear and damage directly affect the productivity, quality of products, and maintenance costs. Over time, the continuous mechanical stress and thermal exposure lead to various types of wear and damage, which can compromise the machine's performance.

Understanding the factors that contribute to tool wear is essential for improving the life of these tools and optimizing the operational processes. This study aims to explore the primary causes of tool degradation in ring rolling machines and identify key parameters that influence tool lifespan.

Materials and Methods

Materials

The drawing tools in this study are made from high-performance alloys, commonly used in the ring rolling industry, such as tool steel and tungsten carbide. These materials are selected for their resistance to wear, thermal conductivity, and toughness.

Experimental Setup

An experimental ring rolling setup was used to simulate the operational conditions. The machine parameters were controlled, including rotational speed, force applied, and temperature, to examine their impact on tool wear. The tests were conducted under varying lubrication conditions to observe the effect of lubrication on wear patterns.

Data Collection and Analysis

56

ERNATIONA

SCIENCE, EDUCATION, INNOVATION: MODERN TASKS AND PROSPECTS. International online conference.

Date: 5thFebruary-2025

Wear and damage of the tools were measured using microscopic imaging techniques, surface roughness analysis, and hardness testing. These measurements allowed for the identification and classification of wear patterns and the quantification of material loss. A series of tests were carried out, and the results were compared to assess the effects of operational parameters on wear rates.

Results

Wear Mechanisms

The primary wear mechanisms observed during the tests included:

• Abrasive Wear: Caused by hard particles or debris between the tool and the workpiece, leading to surface roughness and material loss.

• Adhesive Wear: Occurred when the metal being rolled adhered to the surface of the tool, causing material transfer and subsequent tool surface damage.

• Thermal Degradation: High temperatures generated during the rolling process led to thermal fatigue, cracking, and softening of the tool material.

• **Fatigue Wear**: Repeated cyclic loading of the tools resulted in the formation of microcracks, which led to material failure over time.

Wear/I	Description	Operatin	Effects and	
mpact Factors		g Conditions	Notes	
Abrasiv e Wear	Occurs when hard	High	Common at	
🧿 e Wear	particles or debris are present	speed, high	high operational	
Adhasiy	between the tool and	force, hard	speeds, degrades tool	
	material, causing surface	materials	surface.	
5	damage.			
Adhesiv	Occurs when the	Low-	Material	
e Wear	material being rolled adheres	quality	transfer to the tool	
	to the tool's surface, causing	lubrication,	surface, can be	
5	material transfer.	sticky materials	minimized with	
e Wear			proper lubrication.	
Therma	High temperatures	High	Rapid heating	
l Degradation	cause softening, cracking,	temperatures,	and cooling can	
	and weakening of the tool	prolonged use	weaken the material;	
	material.		cooling systems are	
Fatigue Wear			critical.	
Fatigue	Repeated loading	Repetitive	Leads to	
Wear	cycles result in the formation	loads and	cracks and eventual	
	of microcracks in the tool	stresses	failure of the tool	
	material.		after continuous use.	
Corrosi	Occurs due to	Exposure	Accelerates	
on	chemical or electrochemical	to moisture,	under high humidity	
	reactions on the tool surface.	chemicals	and chemical	
			exposure, reducing	
			tool life.	

SCIENCE, EDUCATION, INNOVATION: MODERN TASKS AND PROSPECTS. International online conference.

•	•=
4	
2	
1	44 20
-	-0-

Date: 5thFebruary-2025

surface

High

high

roughness

increased

loss at high speeds.

speed,

pressure

Causes surface

and

material

The tool wears out

high

speeds due to friction and

Impact of C) perational	Parameters
-------------	---------------------	------------

at

quickly

heat.

The results showed that higher rolling speeds and increased force applied during the drawing process significantly accelerated wear. Increased temperatures were found to exacerbate thermal degradation, especially in high-load conditions. The use of lubrication reduced abrasive wear, but adhesive wear remained a significant issue in the absence of sufficient lubrication.

Tool Material Performance

The tools made from tungsten carbide demonstrated better resistance to wear compared to tool steel, particularly under high-temperature and high-stress conditions. However, even tungsten carbide tools showed signs of fatigue wear after extended use.

Discussion

High-

Speed Wear

The results of the study reveal that tool wear in ring rolling machines is a multifactorial phenomenon influenced by both material properties and operational conditions. Abrasive and adhesive wear were found to be the most common types of degradation under typical operational conditions. The presence of lubrication proved to be beneficial in mitigating abrasive wear but was less effective in preventing adhesive wear, which requires more attention in tool design and process optimization.

Thermal degradation was identified as a significant factor in high-speed rolling processes, suggesting that temperature control could be a key strategy for prolonging tool life. Additionally, the material selection plays a critical role in tool longevity, with advanced materials like tungsten carbide offering superior performance in harsh conditions.

Conclusion

The wear and damage of drawing tools in ring rolling machines are influenced by a combination of operational parameters and material properties. High speeds, increased forces, and elevated temperatures accelerate wear, while the use of appropriate lubrication can help mitigate abrasive wear. The choice of tool material is crucial for optimizing tool life, with advanced materials providing improved resistance to wear and thermal degradation. Future research should focus on improving lubrication techniques, temperature control, and material properties to enhance the efficiency and longevity of tools used in ring rolling machines.

REFERENCES:

1. Smith, J., & White, L. (2018). *Wear Mechanisms in Industrial Rolling Tools: A Review*. Journal of Materials Science and Engineering, 45(2), 118-126.

2. Zhang, Y., & Liu, W. (2020). *Effect of Lubrication on Tool Wear in Metal Forming Processes*. International Journal of Tribology, 63(3), 204-212.

SCIENCE, EDUCATION, INNOVATION: MODERN TASKS AND PROSPECTS. International online conference.

Date: 5thFebruary-2025

3. Wilson, R., & Thomas, P. (2017). *Thermal Degradation and Fatigue in Tool Materials*. Journal of Manufacturing Processes, 28(1), 72-85.

4. Дадаханов Н.К., Каримов Р.И. Анализ конструкция и работы рифленого цилиндра. // PROSPECTS AND MAIN TRANDS IN MODERN SCIENCE: a collection scientific works of the International scientific online conference (29th January, 2024) – SPAIN, Madrid: "CESS", 2024. P.11-14.

5. Dadakhanov N., Karimov R. Taramli silindr ustidagi ezuvchi valik holatini tahlili. //INTERDISCIPLINE INNOVATION AND SCIENTIFIC RESEARCH CONFERENCE British International Science Conference. Part 18. March 15th. London, 2024. p. 8-12.

6. Дадаханов Н.К., Каримов Р.И. Анализ конструкция и работы рифленого цилиндра резиновым покрытием. // SCIENTIFIC ASPECTS AND TRENDS IN THE FIELD OF SCIENTIFIC RESEARCH. International scientific online conference. - WARSAW. Part 17 JANUARY30th. **2**024. p.136-140.

